A.2a (a) Using laws of exponents to simplify monomial expressions and ratios of monomial expressions

1. Which expression is equivalent to $(5x^2)(4x^5)$?

 A $9x^7$
 B $9x^{10}$
 C $20x^7$
 D $20x^{10}$

2. Which expression is equivalent to $(12x^8)(-4x^2)$?

 A $-48x^{10}$
 B $-48x^{16}$
 C $8x^{10}$
 D $8x^{16}$

3. Which expression is equivalent to $(4x^2)^3$?

 A $12x^5$
 B $12x^6$
 C $64x^5$
 D $64x^6$
SOL Warm-Up
Graphing Calculator Active

A.2a (b) Using the laws of exponents to simplify monomial expressions and ratios of monomial expressions

1. Which expression is equivalent to \((- x^2)^3\) ?

 A. \(-x^5\)

 B. \(x^6\)

 C. \(-x^6\)

 D. \(-3x^5\)

2. Which expression is equivalent to \(-\frac{2n^2}{n}\) ?

 A. \(-\frac{2}{n}\)

 B. \(-2n\)

 C. \(-\frac{2n}{n}\)

 D. \(-\frac{2n}{n}\)

3. Which expression is equivalent to \(\frac{3x}{5x^3}\) ?

 A. \(\frac{3x^2}{5}\)

 B. \(\frac{3}{5x^2}\)

 C. \(\frac{3x}{5}\)

 D. \(\frac{3}{5x}\)
A.2a (c) Using the laws of exponents to simplify ratios of monomial expressions

1. Which expression is equivalent to $x^{12} \div x^3$?

 A x^4
 B x^9
 C x^{15}
 D x^{36}

2. Which expression is equivalent to $x^{15} \div x^{13}$?

 A x
 B x^2
 C x^{28}
 D x^{195}

3. Which expression is equivalent to $12x^{10} \div 3x$?

 A $9x^9$
 B $9x^{10}$
 C $4x^9$
 D $4x^{310}$

4. Which expression is equivalent to $36x^8 \div 9x^7$?

 A $4x$
 B x^{15}
 C 4
 D $4x^{15}$
SN (a) Expressing numbers in scientific notation

1. Which expression represents 238.42 in scientific notation?
 A 2.3842 x 10^5
 B 2.3842 x 10^4
 C 2.3842 x 10^3
 D 2.3842 x 10^2

2. Which expression represents 0.000362 in scientific notation?
 A 3.62 x 10^-6
 B 3.62 x 10^-5
 C 3.62 x 10^-4
 D 3.62 x 10^-3

3. Which expression represents 0.783 in scientific notation?
 A 7.83 x 10^-2
 B 7.83 x 10^-1
 C 7.83 x 10^1
 D 7.83 x 10^2
SN (b) Expressing numbers in scientific notation and performing operations

1. Which expression represents 348,000 in scientific notation?
 A 3.48×10^4
 B 3.48×10^5
 C 3.48×10^6
 D 3.48×10^7

2. Which expression represents the product of 0.000008 and 3,500,000?
 A 11.5×10^3
 B 2.8×10^1
 C 2.8×10^4
 D 28×10^4

3. Which expression represents the product of (4.63×10^8) and 500?
 A 2.315×10^4
 B 2.315×10^6
 C 2.315×10^{11}
 D 2.315×10^{16}
A.2b (a) Finding the sum and difference of polynomials

1. \((4x - 2y) + (-2x + 6y) = \) _____

 A \(2x + 4y\)
 B \(-2x + 10y\)
 C \(-2x - 10y\)
 D \(6x + 8y\)

2. \((3m - 6n) + (2m + n) = \) _____

 A \(5m - 5n\)
 B \(-4m + n\)
 C \(m - 7n\)
 D \(2m - 5n\)

3. \((7x^2 + 8x - 4) - (6x^2 + 8x - 6) = \) _____

 A \(x^2 - 10\)
 B \(x^2 + 2\)
 C \(13x^2 + 16x - 10\)
 D \(13x^2 + 2\)

4. \((15m + 11 - 6m^2) - (18 - 6m^2 + m) = \) _____

 A \(7 + 21m - 7m^2\)
 B \(12m^2 + 16m - 7\)
 C \(14m - 7\)
 D \(14m + 29\)
A.2b (b) Using polynomial operations to solve problems

1. A local fast food chain had revenue represented by the polynomial $6x^2 + 5x - 8$ for one fiscal year and expenses for that same fiscal year represented by the polynomial $4x^2 - 3x + 7$. What was the company’s profit for the fiscal year?

 A) $10x^2 + 2x - 1$
 B) $2x^2 + 8x - 15$
 C) $2x^2 + 2x - 1$
 D) $2x^2 - 8x + 15$

2. Sherry owned a card shop and an art store. The card shop profits for 1998 are represented by the polynomial $3x^2 + 5x + 8$. The art shop however had losses for 1998 represented by the polynomial $2x^2 - 8$. Which polynomial represents the total amount Sherry made in 1998?

 A) $5x^2 + 5x$
 B) $x^2 + 5x$
 C) $x^2 + 5x + 16$
 D) $x^2 - 5x - 16$
A.2b (c) Multiplying polynomials by a monomial

1. What is the product $2a(4a^2 + 6)$?

A $8a^3 + 8a$
B $8a^3 + 12$
C $8a^3 + 6$
D $8a^3 + 12a$

2. What is the product $2m^2 (5m^2 - 6m + 2)$?

A $10m^4 - 6m + 2$
B $10m^4 - 12m^3 + 4m^2$
C $10m^4 - 12m^3 + 4m^2$
D $10m^4 - 12m^3 + 2$

3. What is the product $-3xy(3x^2y + 2xy^2 - 7y^3)$?

A $-9x^3y^2 - 6x^2y^3 + 21xy^4$
B $-9x^3y^2 + 2xy^2 - 7y^3$
C $-9x^3y^2 - 6x^2y^3 - 7y^3$
D $-9x^2y + 6x^2y^3 - 21xy^4$

4. A triangle has a height of $4x$ and a base of $3x + 1$. What is the area of the triangle? $A = \frac{1}{2}bh$

A $12x^2 + 4x$
B $6x^2 + 2x$
C $7x + 1$
D $5x + 1$
A.2b (d) Multiplying binomials by binomials

1. What is the product \((4x - 3)(x + 4)\)?

 A. \(4x^2 + 8x - 12\)
 B. \(4x^2 + 13x - 12\)
 C. \(4x^2 + 16x - 12\)
 D. \(4x^2 + 13x + 12\)

2. What is the product \((x + 3)(5x - 2)\)?

 A. \(5x^2 + 13x - 6\)
 B. \(5x^2 + 15x - 6\)
 C. \(5x^2 + 17x - 6\)
 D. \(5x^2 + 15x + 1\)

3. What is the product \((3x - 2)^2\)?

 A. \(9x^2 - 4\)
 B. \(9x^2 + 4\)
 C. \(9x^2 - 12x - 4\)
 D. \(9x^2 - 12x + 4\)

4. The trinomial \(3x^2 + 7x + 2\) is depicted below using algebra tiles. What are the factors of the trinomial?

 A. \((x + 1)(3x + 2)\)
 B. \((x + 2)(3x + 1)\)
 C. \((2x + 1)(x + 3)\)
 D. \((x - 1)(3x - 2)\)
A.2b (e) Using polynomial operations to solve problems

1. What is the area of a square with a side of length $3x - 1$?

 A $6x^2 - 1$
 B $9x^2 - 1$
 C $9x^2 + 1$
 D $9x^2 - 6x + 1$

2. A rectangle’s length is $5x - 2$ and width $2x - 1$. What is the area of the rectangle?

 A $7x^2 - 3$
 B $10x^2 - 7x + 2$
 C $10x^2 + 7x - 2$
 D $10x^2 - 9x + 2$

3. A rectangle with area $x^2 + 4x + 3$ is depicted below using algebra tiles. What are the dimensions of the rectangle in terms of x?

 A $(x + 3)$ by $(x + 1)$
 B $(3x + 1)$ by $(x + 1)$
 C $(x + 3)$ by $(x + 3)$
 D $(3x + 1)$ by $(3x + 1)$
A.2b (f) Using polynomial operations to solve problems

1. Which polynomial describes the area of the rectangle shown below?

 A $18x^2$
 B $2x + 9$
 C $x^2 + 9x + 18$
 D $x^2 + 3x + 18$

2. The side of a square is represented by the binomial $2x + 5$. Which polynomial represents the area of the square?

 A $4x^2 - 3$
 B $4x + 10$
 C $4x^2 + 20x + 25$
 D $4x^2 + 10$
A.2b (g) Using operations with polynomials to solve problems

1. The formula for the area of the trapezoid is \(A = \frac{1}{2} h(b_1 + b_2) \).
 If \(h = 4x \), \(b_1 = x^2 + 2 \) and \(b_2 = 3x^2 + 2x - 4 \), which polynomial represents the area of the trapezoid?

 A. \(16x^3 + 8x^2 - 8x \)
 B. \(8x^3 + 8x^2 - 6x \)
 C. \(8x^3 + 4x^2 - 4x \)
 D. \(6x^5 + 4x^4 + 4x^3 + 8x^2 - 16x \)

2. The formula for the volume of the rectangular solid is \(A = lwh \).
 Assume the following rectangular solid shown below has a square base. The side of the base is represented by the polynomial \((x + 2)\) and the height of the solid is represented by the polynomial \((3x)\). Which polynomial represents the volume?

 A. \(3x^2 + 6x \)
 B. \(3x^3 + 12x^2 + 12x \)
 C. \(3x^3 + 12x \)
 D. \(6x^2 + 12x \)

3. The diagram below shows a swimming pool surrounded by a wooden deck. Which polynomial represents the area of the deck?

 A. \(25x^2 + 20x \)
 B. \(6x^3 - 24x \)
 C. \(19x^2 - 4x \)
 D. \(19x^2 + 44x \)
A.2b (h) Using laws of exponents to find the quotient of polynomials

1. What is the quotient \((15x^4 - 9x^2) \div 3x\) ?

 A. \(12x^3 - 6x\)
 B. \(5x^3 - 6x\)
 C. \(5x^3 - 3x^2\)
 D. \(5x^3 - 3x\)

2. What is the quotient \((28x^5 + 20x^3 - 8x) \div 2x\) ?

 A. \(26x^4 + 18x^2 - 6\)
 B. \(14x^4 + 10x^2 - 4\)
 C. \(26x^4 + 18x^2 - 6x\)
 D. \(14x^4 + 10x^2 - 4x\)

3. What is the quotient \((30x^6 + 20x^4 + 10x^2) \div 10x^2\) ?

 A. \(20x^8 + 10x^6 + x^4\)
 B. \(20x^4 + 10x^2 + 10\)
 C. \(3x^8 + 2x^6 + x^4\)
 D. \(3x^4 + 2x^2 + 1\)

4. What is the quotient \((45x^8 - 27x^6 + 18x^4) \div 9x^2\) ?

 A. \(5x^6 - 3x^4 + 2x^2\)
 B. \(5x^{10} - 3x^8 + 2x^6\)
 C. \(36x^6 - 18x^4 + 9x^2\)
 D. \(36x^{10} - 18x^8 + 9x^6\)